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TENSOR ANALYSIS OF ANOVA DECOMPOSITION

1. Introduction. 1

§1 Introduction.

The purpose of this paper is to demonstrate the almost complete analogy be-
tween ANOVA for general n-factor crossed layouts and the ANOVA type decomposition
of square integrable statistics used in the literature on U-statistics and in connection with
the Jackknife estimate of variance (Efron and Stein(1981), Bhargava(1980), Karlin and
Rinott(1982)). This will be done using notions and notations of tensor analysis and multi-
linear algebra. It will be clear that the latter is just an infinite dimensional generalization
of the former. Usually the analogy between the two is understood in an operational sense,
namely how the higher order interaction terms are defined by an inclusion-exclusion ar-
gument. Various subclass means are added and subtracted in the usual ANOVA; various
conditional expectations in the sccond case. Then the ort;hogbnality of the interaction
terms are proved. For ANOVA Mann(1949, Chapter 5) gives a classical treatment. Sece
also I1an(1977) for a treatment in modern terminology. By using tensor analysis we can
in a sense reverse the argument. Orthogohal subspaces -of an appropriate veclor space
can be directly described. Ounly thé dimensionality is different in the two cases. The
inclusion-exclusion pattern then fdllows from the form of the orthogonal projectors onto

these subspaces.

In ANOVA and experimental design tensor approach has been employed by a
number of people. Tt provides a natural and powerful tool for treating general n-factor
crossed layouts and other designs. Unfortunately ferminology and notation were not
standardized, in particular an essentially same notion has been called tensor, Kronecker,
direct, or outer product. Approaches employed were sometimes elementary, sometimes more

abstract. This is one of the reasons why this approach has not been very often taught.

In the field of experimental design, Kurkjian and Zelen(1962) introduced a “calculus
for factorial arrangements”. Following this work there have been many papers using direct
product notation for construction and analysis of various designs, including Kurkjian and
Zelen(1963), Zelen and Federer(1964,1965), Federer and Zelen(1966), Bock(1963), Paik and
Federer(1974), Cotter, John, and Smith(1973), Cotter (1974,1975), John and Dean(1975a,b).
- The terminology and notational conventions introduced by Kurkjian and Zelen(1962) seem

to be rather arbitrary. Connection between their “calculus” and the standard tensor



analysis or multilinear algebra was not made clear. Another drawback is that they confined
their theory to the usual matrix theory and multilinear aspects tend to be lost. For example
they define direct product of matrices as a partitioned matrix of a larger dimensionality
(this is still a common practice today in stétistics). But this introduces an unpleasant

ordering of indices and the symmetry inherent in the problem becomes obscured.

Another group of people employing this technique are found in the coordinate-
free approach in linear models, for example Jacobsen(1968), Eaton(1970), Haberman(1975).
Jacobsen(1968) seems Lo be the first systematic treatment of ANOVA from the viewpoint
of multilinear algebra. In addition to the new viewpoint his treatment of the nested model
and the missing observation method is interesting. Unfortunately his results do not seem
to have been published in a more widely available form and has been almost forgotten
in the later literature. Furthermore his treatment suffers from excessive mathematical
formalism and arbitrary notational conventions. Later IHaberman(1975) gave a thorough
treatment which can be regarded as a standard reference so far. One problem with these
mathemaltical treatments is that an essentially elementary nature of the approach and

practical computational aspects are often diflicult to grasp.

In Section 2 we define tensors as multidimensional arrays as in the usual tensor
analysis (Sokolnikoff{(1964), Chapter 2). By doing this the unpleasant ordering of indices
mentioned above is avoided. Qpcerations on these arrays are explicitly described. Tn any high
level computer language multidimensional arrays can be used as easily as matriécs, 8o this
approach can be immediately incorporated in computer programs. Standard terminology
of tensor analysis and multilinear algebra will be employed. Furthermore we develop the

theory in such a way that it can be easily generalized to L%-spaces.
In Section 3 we briclly look-at the general n-factor crossed layout.

In Scction 4 we treat the ANOVA type decomposition of a statistic with. finite
second moment by generalizing the results of Section 2 and 3 to L*-spaces. The decom-
position was first introduced by Hoeffding(1948) in conneclion with U-statistics. Often
the linear terms of this decomposition (corresponding to the main effects in ANOVA) are
called Hajek projection following ’Hzmjek(il.968) and uscd extensively to prove asymptotic

normality of various statistics. See Serfling(1980) for further references. Recently more
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attgntiorl is paid to the full decomposition. Rubin and Vitale(1980) developed a general
asymptotic theory of U-statistics using the full decomposition. Efron and Stein(1981) used
the decomposition in their study of the Jackicnife estimate of variance. Turther results
and generalizations are given in Bhargava(1980) and Karlin and Rinott(1982). In the ab-
sense of a standard reference for the decomposition each of them gave a definition of the
decomposition using various variations of an inclusion-exclusion argument. Our approach

is different from these as mentioned at the beginning.

§2 Tensor products of vectors, matrices, vector spaces and subspaces.

In this section we develop a theory of tensors. Particular references used in Vthis
section are Greub{1978), Chapter 1 and Sokolnikolf{1964), Chapter 2. A full abstract
treatment can be found in Chapter 1 of Greub(1978). In a pure mathmatical treatment
tensors are developed in a coordinate-free way (Greub(1978)). This is clegant but not
desirable from the viewpoint of c<‘)mpul,at;ional applicabilily in statistics. On the other
hand the traditional lensor analysis (Sokolnikofl(1964)) is more practical but is too closely
tied to physies and much emphasis is placed on curvilinear coordinates which we do not
need here. We take appropriate notions and notations needed from both of them. Proofs
can be found in various references given above and hence omitted below except for a few

places.

Let R™ be the sct of all column vectors z = (z!,...,2™)" with m clements of
real numbers. To denote the components of a column {or contravariant) vector we use
superscripts following the traditional notation in tensor analysis. Vector addition and scalar
multiplication are defined in the usual componentwise way. Now tensor (Kronecker, direct,
outer) product z @ y of = (€ R™) and y (€ R™) is a two-dimensional array defined by a

componentwise multiplication:
(2.1) | (2@ y)7 = o' -y,
Namely, £ ® y is a two-dimensional array of dimensions m and n whose (%, 7) element is

iy (i =1,...,m, j = 1,...,n). Now we define an addition of tensor produets in a

componentwise way,

(2.2) (az @ y + b2 @ §) = az’y’ + b3'y,



where a,b are scalars. This leads to a vector space generated by {zQy, z€R™, yE€E

R™ } which we denote by R™ @ R™. Namely

R™ QR™ =span{zQy, z€R™, y€R"}
: k

= { Z ai(g: RY), k: finite}.

=1

(2.3)

Here the index 7 is written directly below the corresponding vectors  and y because usual
subscripts are used as covariant indices in tensor analysis. This point will be discussed later
in this section in connection with lincar transformations. R™ @ R™ is called the tensor

product of R™ and R"™. A general element u € R™ @ R™ is called simply as a tensor.

As one might expect, B™ @ R™ is just the set of all two-dimeusional arrays of

dimensions m and n. We will make this point clear in a couple of propositions.

Lemima 2.1. z ®y i3 bilinear in z and y. Namely

oz +t8) @y = a(z @ y) + b(E Qv),
(2.4) 2 Q(ey+df) = (= @) + d(z @ F),

where a,b, c,d are scalars.

- Ricd 3 . .
Let ¢ denote a vector in BR™ whose ¢-th element is one and other clements are
1
e 3 . . . m n . .
zero. {€, 1 =1,...,m} forms an obvious basis of ™. Now consider € ) € which has I in
1 T 2
(¢, §)-position and 0 everywhere else. Then

Proposition 2.1. {e®¢e i=1,....,m, j=1,...,n} is a basis of R"QR".
j

1

hence

Corollary 2.1. (iinl(Rm@R") = mn and R™@R"™ coincides with the set of all two-

dimensional arrays of dimensions m and n.

Remark 2.1. An element u € R™® R™ which can be written as u = z®y for some
z € R™, y € R™ is called decomposable. R™ Q@ R™ does not consist only of decomposable
clements. This is casily seen by noting that x®y is of “rank 1” in the terminology of the

usual matrix theory.
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In R™ we have the usual inner product. In R™ @ R™ a natural inner product is

defined in an analogous way. Let u,v € Rm® R™. Then we define

(2.5) ' (u,v) = Z Z w7,

Cg=1 g==1
Proposition 2.2, For two decomposable elements zQ7%,yRY of R QR™ we have

(2.6) (=®%,1®4) = (z,3) - (2,3)

Proof:
(z®%, y®7F) = Z(w@a-)"" (y®7)¥

—Zz Byy
—ET Zxay

- (zi y) (IB, :l/)-

Now we procced to define tensor products of more than two vectors. Let z €
T
R™ ¢ =1,...,k. Then :1v®- . ®f is defined to be a k-dimecnsional array of dimensions

miy,...,mg such that

(2.7) (f@"'@f)il.”ik =:Bil"'$l7ik.

Addition is defined componentwise and the space generated by { :lv® . -®f, zER™, 1=
.,k} is called the tensor product of R™t,..., R™ and denoted by R™t@--- Q R™*

or ®‘_1R""‘. Lemma 2.1, Proposition 2.1, Corollary 2.1 hold for & > 2 with obvious

modifications. Now for general clement u, v of @¥_; R™: we define the natural inner product

by

(2.8) (u,v) = Z Z ey

1y=1 =1

Then analogous to (2.6) for two dccomposable clements :{:®- . ®f’ ?1J®- .- ®'.Z of @%_ (B

we have

(2.9) (z®--- ®f,g{®...®g’{) = (g, .11,) (z,

pY)



Remark 2.2. If z and ¥ are orthogonal for some 7, then :lc®- . ®f and ’il®- . ®‘.z are
% L 3

orthogonal.

Next we consider subspaces and its orthogonal complements. Let Uy,...,Us be
subspaces of R™1,..., R™* respectively. Then a subspace UiRy - - QU of R™ @ - - QR™*
is defined to be the subspace generated by {:1v® .. ®lff, r€elU;, 1=1,...,k}. Namely

N 1

(2.10) Ui®-- QUi = span{f®-'-®f, z€ U, i1=1,...,k}.

Let U,-J- denote the orthogonal complement of U; in R™¢. For convenience we

define U? = U;, U} = Uil. Then we have

-Theorem 2.1 2% subspaces {QF_, U, e =0,1, i=1,...,k} form a decomposi-

tion of @F_R™ into mutually orthogonal subspaces.

This is elear by taking appropriate orthonormal basis of R™, ¢ =1,...,k and

applying Remark 2.2.
Corollary 2.2.

(2.11) (U1 Q- QUi)L = span{®F_,U¥, ¢; = 1 for somei}.

i==1

Now we are going to defline tensor product of matrices. An n X m matrix A is
considered to represent a lincar transformation from RR™ to R™. In this sense we want to
distinguish matrices from two-dimensional arrays (elements of R*@R™). In tensor analysis
this is done by writing the second index as subscripts. Namely (2, 5) element of a matrix
A is denoted by A; Superscripts are called contravariant indices and subscripts as called
covariant indices. The reason behind this is discussed in Remark 2.4 below. Now let {1 |
be n; X m; matrices, £ = 1,...,k. We want to define a teﬁsor product of {1,...,7;4 in
a meaninglul way. I'or notational convenience we first do this for the case & = 2. Tor
matrices A (n1 X mi) and B (n2 X mg) we define AQD as a four-dimensional array with

two contravariant indicies 7y, 72 and two covariant indices ji, j2 such that

(2.12) (A®B)itiz = A% . Biz.

Jij2 J1
This is again a componentwise multiplication as in (2.1). Now A® B defines a lincar

transformation from R™ @R™? to B QR™* as follows. Let u ER™ QR™? then v =
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(AQ®B)u€ R* @R™: is defined by

mi me

vt =37 > (A®B)f i

J1=1ga==1

m; ma
— 1, Rz, 0102
=) ) Al.Ba.ud

j1=l j2=1

(2.13)

As in (2.6) we have
Proposition 2.3. For a decomposable element x @y of R™ @ R™:

(2.14) (AQ B)(zRy) = Az®By.

Remark 2.3.  We could have used (2.14) as a definition of AQB. It shows how AQRB
maps decomposable elements of R™ @ B™2. Since the decomposable clements generate
R™ @R™2, AQB for general clements can be defined by lincarity. This is more elegant
mathematically but for practical applications formula (2.13) will be useful. The same

remark applies to Proposition 2.2.

Generalization of the above argument to tensor product of more than 2 matrices

is immediate. Instead of (2.13) and (2.14) we have

(2.15) (4@ @A™ = 37 Ao Ajeutith,
Fryeeeng 1 k
(2.16) (A®- - QA:E® - Q2) = Az®- - Az.
respectively.
Remark 2.4. R™ was defined as the sct of column or contravaﬁant vectors. The dual

space R™* can be defined as the sct of row or covariant vectors whose components are
denoted with subscripts z = (z1,...,2m). Then R™*@R™*, R™*QR"™*, etc., can be defined
in a similar way as R™@R™ is defined by (2.1)-(2.3). By the natural isomorphism between
R™@R™ and the space of all linear transformations from R™ to R™ (see Greub(1978),
" Section 1.28) a linear transformalion A can be identified with an clement of R™Q@R™ and

has one contravariant index and one covariant index.



Our last item in this section is a discussion on orthogonal projectors. Let V be
a vector space and UCYV be a subspace. A linear transformation Py from V to itself is

called the orthogonal projector onto U if

v Pyz=2z2 for z€U,
(2.17) Pyz =0 for z€UL.

Theorem 2.2. Let U;CR™, i = 1,...,n be subspaces and Py, be the orthogonal
projectors onto U in R™i =1,...,n. Then the orthogonal projector onto @7, U; CRL_ R™
s given by Py, Q- - QFy, .

Proof: Let 2 € U;, i=1,...,k. Then by (2.16)

(Py, @ QPy,)z®: - ®2) = Pu @ - QFu, T
(2.18) ' _ =3Q- - @z

Hence for general elements u of U;®- -+ QUi we have (Py, Q- - - @ Py, Ju = u by linearity.
Now by Corollary 2.2 (U;®--- QUx)- is generated by {f‘® x ®f’ T € U;L for somei}.
For such :1v®“" ®f

(-PU1®' .. ®[)Uk)(¢f®. . ®;k1:;) = PUI;II;®. .o ®17ka
(2.19) =0.

Hence by lincarity

Py, @+ Py )Ui®--- QUi)L = {0}

Sce [Taberman(1975), Lemma 8, for an a]tcrnativc'proof using the fact that Py, @

-+ @ Py, is idempotent and self-adjoint.
k

§3 ANOVA for crossed layouts.

Now we take a brief look al ANOVA for an n-factor crossed layout with single

observation per cell. For morc detailed treatments of various designs sce the references
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given in Section 1. For each combination of factor levels (?1,...,%,) we have an observation
g'1-*n, Therefore the set of observaftions {z?+~*»} can be considered as a (random) tensor
z €Qi1BR™ ANOVA is essentially a decomposition of @2 1™ into mutually orthogonal
subspaces. When all interactions are considered it is decomposed into 2™ subspaces. Usually
this is done by an inclusion-exclusion argument. Here we give the desired decomposition
directly as follows. Let T be a vector in R™ with all components equal to 1. Let
U; = span{ ;'} and consider the decomposition of @, R™ in Theorem 2.1. We use
the notational convention of THcorem 2.1. Following Scheffé(1959), Section 4.6 let Liy..i,
denote the (iy,...,2) -interaction subspace for 1 < iy < ... < iy < m, k= 0,...,n. We

claim that
(3.1) Liviy =U$'® - QUY,

where

e=1 if i€ {i,...,i},
=0 otherwise.

This can be shown by considering the orthogonal projector onto the right hand
side of (3.1). Note thal the orthogonal projector onto U; = span{ 1 } is given by (in matrix
form)

1 mimgl
(3.2) F=—11,
1 m.!'
For z = (z!,...,2™) we have Fz = (%,...,%)'. Furthermore I — F is the orthogonal
m; 1 1
projector onto U ;L, where I denotes the m; X m; identity matrix. Now by Theorem 2.2

the orthogonal projector onto the right hand side of (3.1) is given by
(3.3) : Py i = f.?@'---@kQ,
where

Q=1‘_gr if 1€ {i1,...,ix}

t
= F otherwise.
%
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For example consider Pj3:
my mo
Pp=( -F)QUI -FOFQ:-QF
my moy mg
(3.4) =1 QI QI Q- QF - I'QI QF®---QF
my
' —1 QIQIQ---QF + FRIRF®:--- ®F-

Operating P;2 to = we obtain the usual expression:
(3.5) (Plgm)i""i“ —_ 5:_,'1,'2,,, _ E...'z... _ T“‘ T
Note that the exbansion of the expression for the projector leads to the inclusion-exclusion.
This pattern should be clear for general P;,..;,. This proves (3.1).
The sum of squares due to (41, ..., %k)- interaction for an observed tensor z is given

by

(3.6) Sivie = (Piy.in®y Pry. i @)

Note that the actual computation of (3.6) can be done using (3.3),(2.15) and (2.8).

The degrees of frecdom (d.f.) of (iy,...,%k)-interaction is given by dim{L;,.. ;).
Noting that dim(U;) =1 and dim(U;-) = m; — 1 we obtain by Corollary 2.1
k

(3.7) d.f.of (¢1,...,1k) — interaction = H (mg; —1).
]';=_;l

§4 ANOVA decomposition of a statistic.

In this section we study the ANOVA type decomposition of a square integrable
statistic S(z1,...,zk). TFor this ;:urpose we extend the results in the previous scctions
to L?*-spaces. Particular references used here are Maurin(1967), Section 3.10 and Murray
and von Neumann(1936), Chapter 2. Let (X1, g1),...,(Xn, tn) be probability spaces. We
consider the L?-space of the product probability space (X;,, pi,) X+ X(Xi,, #i, ):

(1) LAy, Xo) = (Blaisenrmi) | [ 97000 ) i (dns) < o0,



4, ANOVA decomposition of a statistic. ' 11

Note that L(X;,,... y X ) CLA (X, X5,) i {dnye e, 8 YC {1y, e }. For simplicity
we assume that Xy,..., X, are locally compact, separable, metrizable spaces so that I2-

spaces in-(4.1) are separable. See Dieudonné (1976), Chap. 13.

For notational convenience let n=2, general case being an obvious modification. -
Let ¢(z1) € L*(X1), ¥(z2) € L3(X3). Intuitively we can think of ¢, ¥ as having continuous
indices z1,%2. Sum of squares is replaced by squared integrals. Now definc @Y by a

componentwise multiplication:

(4.2) (@91, 22) = (1) '1/)(1:2)‘6 L*(X1, X3).

Note that

[ et ez )

4.3
(3) = /¢(_¢cl)2,u1-(dz1)/'lb(wz)zuz(dxz) < oo.

Hence ¢Q1 € L% Xy, X3).
Now let L¥(X1)® L*(X2)CL*( X1, X2) be defined as in (2.3), namely
LAX)@LHX2) = span{$@v¥, ¢ € LHXy), o € L¥(Xa)}

k
= closureof { Z a;0;:Qvpsi, k: finite}.

=1

(4.4)

Proposition 4.1, LZ(X[)®L2(X2) = Lz(Xl,Xg).

This is a standard construction (Maurin(1967), Example of Section 3.10) and a

simple consequence of the following well-known result.

Lemma 4.1. Let {¢1,09,...} and {¥1,%2,... } be complete orthonormal systems
of L3(X1),L%(X3) respectively. Then {d:v;, i =1,2,...,5 = 1,2,...} i3 a complete
orthonormal system of L?(X 1, X5>).

For a proof of this see Murray and von Neumann(1936), Lemma 2.2.1 or Courant
- and Hilbert (1937), Sec I1.1.6. Lemma 4.1 shows that as in Lemma 2.1 and Corollary 2.1
decomposable clements of the form ¢, Q9;= ¢, - %; generate the.whole L*(X 1, X3) space.
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Now let us take a look at the inner product. Let ¢1, ¢ € L2(X), ¥1, %2 € L Xa).
Then

(61 R@%1, b2 Q2)
= /¢1($1)¢1(x2)¢2($1)¢2(932)#1(dxl)#z(dmz)

= [ iesateimtan) [ ileaba(aalnsiizs)
== (‘]51: ¢2) : (1/).11"/)2)-

(4.5)

This is the same relation as in Proposition 2.2. We see that the inner product of L3( Xy, Xo)
corresponds to the inner product introduced to R™ @ R™ in Section 2. Therefore all
orthogonality relations of Section 2 can be translated here. In particular Theorem 2.1

can be generalized as

Theorem 4.1. Let U; be a closed subspace in L3(X;), i =1,...,n. Let U@ QU,
be defined as a closed subspace generated by {$1 @ Qén, ¢ € I, i = 1,...,n}.
Let U = U;, U}l = U;L for convenience. Then 2™ subspaces {Q7_ U, & =
0,1, 7 = 1,...,n} form a decomposilion of L3(Xy,...,Xn) into mutually orthogonal

closed subspaces.

Now let F; : L3(X;) — L*(X;), 1 = 1,2, be bounded linear transformations. We
define a linear operator (casily seen to be bounded) I @ F2 : LA X, X2) — L*(X1, X32) by

(4.8) (FIQF:) (1 Q¢2) = F161Q Fada

for decomposable elements and extend by linearity. See Remark 2.3. For a further

justification of this sce Murray and von Neumann(1936).

Next we consider orthogonal projections. Note that the definition of orthogonal
projector in (2.17) is independent of the dimensionality. Therefore with the same proof for

Theorem 2.2 we have

Theorem 4.2. Let U,CI*X;), i = 1,...,n be closed subspaces and Py, be the
orthogonal projectors onto U; in L2(X;),% = 1,...,n. Then the orthogonal projector onto

®r_ U;CLA(Xy,..., Xn) is given by Py, @+ @ Py,.



4. ANOVA décomposit.ion of a statistic. 18

Now let us come back to ANOVA type decomposition. Let 1;(z;) = 1 € L¥(X;)
and U;==span{1; }C L*(X;). LetF; be a linear transformation corresponding to taking the
mean. TFor ¢ € L2(X;) |

Fi¢p = /‘ﬁ("’i)ll’i(dz;’)

(47) = £¢ = (£9)1: € LX(X).

Then F;1; = 1; and ;¢ = 0 .for = Lé(Xi) such that (1;,¢) = 0. Therefore F; is the
orthogonal projector onto U; and Py, = F;. Denoling the identity map of L2(X;) by I; we
have PU;'— =I; — F;. Now we define L,,. ;, by (3.1) and P;, ;, by (3.3) with [;, I'; replacing
I'F.

To sce how F;,, ;. bechaves we fix complete orthonormal systems { 4%, 65,... }
of L3(X;),i = 1,:..,n, such that ¢} = 1;, ¢ = 1,...,n. Note that Py,¢i= ¢} = 1,
PU‘.(bg- =0, for § > 2. Also (I; — Py,)¢} = 0, (Ii - _I’U‘.)gb;'- = (bj- for 5 > 2. Using thesc
relations we obtain |
Pi ], Q- @07 = ¢; Q- Q¢F,  if je>2 for
te {i1,...,ik} and jp=1
(4.8) Jor L& {dy,...,ic},

=0 otherwise.

Now consider § € L%(Xy,...,X,). By Lemma 4.1 {¢} ®---®¢7, } forms a basis
of L?(Xy,...,z,). llence we can write
(4.9) S = Z Zajw.j,,ﬁb;l@' Q97 ,
jl jn

where

Gjpog = /S(ml,...,x")¢;~l--- * pi(dzy) - pn(dey).

Using (4.8) we obtain the following theorcm.

Theorem 4.3.
(4.10) PiaS= ), bRkee-dk
=2 1K<k

where

b = /S(xl,.--,wn)¢§i($i1)"-¢§2(xek)ﬂ}(d$1)'"ﬂn(dxn)-



Y

Remark 4.1. Actually (4.10) does not cover the case k = 0. In this case PpS =
ar..1=¢€8.

Theorem 4.1 gives a “coordinatewise” description of P;, . ;, given complete or-

thonormal systems.

In Efron and Stein(1981), Bhargava(1980) and Karlin and Rinott(1982) these
projections are given using conditional expectations. We will show that two definitions

are the same. Let E; :L%(X},.. '.A,‘X,,l) —I2%(X,,...,X,) be defined by

Ei¢ - / ¢(x1) ey xn)lu"i(dx‘i)

4.11
( ) =€(¢I1111,...,:B,;_l,ﬂ?.,;+1,...,xn).

Let I denote the identity map in L#(X4y,...,Xn). Then

(4.12) _ (_[—.E¢)¢=¢—€(¢|a:l,...,:z:i_l,m¢+1,...,xn).
Let
(4.13) H; . i =Gro--0Gy,

where o, denotes composition of the maps and

G-,;=I—Ei ’I:f iE{il;""ik}:
= F; otherwise.

Then
Theorem 4.4.

(4.14) H;, . i = Piy e

Proof: Since {¢] &+ ®¢7, } forms a basis it suflices to prove that

[11 'Lk((.b ® ®(/)'n.)__ T1.. tn(l_11® ®¢ )
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for all (ji, ..., 4n). Let ¢ = ¢% ®--- @¢2 . Then

Bip = /d’al‘x Q- ®¢?"ﬂi(d$i)
= ¢]1.1...(g¢;'.‘)1i. . '¢;':.(“’n)°

Hence
Edp=0 if5i >2
=9 ifi=1

IFfrom this it follows that

Hi\.i (4], @ Q¢7) =6, Q- Q7. if je>2 for
eE{il,...,ik} and jp=1
(4:15) | for €& {iy,... ik},

=0 otherwzise.

This is identical to (4.8). &

If we expand the right hand side of (4.13) we obtain the inclusion-exclusion pattern

of conditional expectations. Tor example -
H\S=(I—-FE{)oE30--- 0 E,S

(4.16) = /Sﬂz(dm)'-wn(dzn)—/Sm(dwl)---ﬂn(dx,,)
= &(S | 1) - £(S).

Hi38S = (I—E\)o(I—E3)oE30--- 0o E,8
=FE3o0---0E,S—Fj0FE30... 0,8
(4.17) —Iigol30-r0F,S+Eiollgo-- 0 EnS
= (S | 1, 22) — E(S | wa) — E(S | z1) + £(S).

These expressions are used as definitions of the terms of ANOVA lype decomposi-

tion in Efron and Stein(1981), Bhargava(1980), and Karlin and Rinott(1982).

Acknowledgements. The author wishes to thank M.L.Eaton, C.Hirotsu, M.Stecle, and
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